这种竞合关系不仅会局限在云端。2018年7月,谷歌推出Edge TPU芯片,从命名上就可以看出这是此前推出的云TPU的简化版本,是专门设计的加速器芯片,用于在边缘运行TensorFlow Lite机器学习模型。 英雄所见略同,阿里也有端云一体的战略。在含光800云端AI芯片发布之前的7月和8月,阿里接连发布了高性能RISC-V架构处理器玄铁910以及SoC芯片平台“无剑”。也就是说,阿里的C-Sky系列、玄铁系列AIoT终端芯片IP,一站式芯片设计平台无剑,以及最新发布的云端AI芯片构建了阿里端云一体的芯片生态,平头哥端云一体全栈芯片产品家族雏形已现。 另外,2019云栖大会期间还有一个芯片的重磅宣布,阿里人工智能实验室和平头哥共同定制开发的智能语音芯片TG6100N,会在即将推出的音箱产品中使用。 科技巨头们的自研AI芯片要涵盖云端和终端其实也很容易理解,无论是芯片巨头还是科技巨头,他们都认为未来数据将像石油一样具有价值。因此,巨头们需要端云一体的战略挖掘数据的价值,在数据的时代保持领先,而这个战略非常重要的支撑就是云端和终端的AI芯片。 此时科技巨头和芯片巨头都会有云端和终端的AI芯片,竞争就难以避免。雷锋网认为,竞争激烈的程度更多会取决于科技巨头,由于他们对自己的业务和数据有更深的理解,他们定制化的ASIC芯片更容易达到性能和能效的最优。即便自研的AI处理器性能弱于芯片巨头的产品,如果科技巨头出于自主可控的考虑,用自身的业务和场景去支撑自研芯片的迭代和优化,为此付出一些代价,最终也能研发出在特定领域非常具有竞争优势的芯片。 注意,科技巨头们会在与自己业务和生态相关的领域自主研发AI芯片。但如果想要替代现有的成熟芯片,比如英特尔的至强CPU和英伟达GPU,既没有价值也面临巨大的风险。归根结底,科技巨头们自研AI芯片的初衷是为了获得更大的经济效益,通过自主研发的芯片保持其技术和生态的领先性。同样,他们的自研芯片也更多的会服务于自己的业务和生态,而非抢食芯片巨头们的市场。 雷锋网小结 AI时代,科技巨头们与芯片巨头们不再只是紧密的合作伙伴,也会在特定领域成为竞争对手。也就是说,对于芯片巨头们而言,想要在科技巨头拥有自研芯片的领域获得订单,需要付出更多的努力。 反过来,芯片作为一个技术、资本、人才都密集的行业,其长周期的特点也与互联网和移动互联网快速迭代的模式不同,如何找到软硬之间的最佳平衡点,以及如何与芯片巨头们多年在芯片领域积累的优势竞争,也都是科技巨头自主研发芯片面临的挑战。
微信公众号搜索" 驱动之家 "加关注,每日最新的手机、电脑、汽车、智能硬件信息可以让你一手全掌握。推荐关注!【微信扫描下图可直接关注】
|